THE INFLUENCE OF COMPENSATION AND WORK DISCIPLINE ON THE PERFORMANCE OF TEACHERS (TEACHERS) OF TAMAN SISWA PRIVATE VOCATIONAL SCHOOL AT THE TAMAN SISWA PRIVATE VOCATIONAL SCHOOL FOUNDATION

e-ISSN: 3025-8308

Jopinus Saragih Efarina University jr.saragih@unefa.ac.id

Abstract

This research aims to find out how compensation and work discipline influence the performance of teachers (teachers). The population in this study were all civil servants (teachers) at Taman Siswa Tebing Tinggi School totaling 51 people, consisting of 19 people from SMK Business Management and 32 people from SMK TSM. The sample taken was 51 respondents using census techniques, namely the entire population was sampled. The regression analysis method used is multiple linear regression and to test the hypothesis the t test and f test are used at the significance level or alpha = 5%. The research data were analyzed or processed using the SPSS version 17 program. Based on the research results that of 0.696 or 69.6%. This shows that the compensation variable (X1) and work discipline variable (X2) can explain the performance variable (Y) by 69.6%, the remaining 30.4% (100% - 69.6%) is explained by other variables outside this research model. In the results of the multiple linear regression test, the following regression equation is obtained:Y = 3.975 + 0.620X1 + 0.245X2 + e. The results of the hypothesis test state that: H1 is accepted, this can be seen from the tcount value of 4.479 > ttable 2.009 and with a significance value of 0.000 < 0.05, compensation has an effect on the performance of the tutor (teacher). H2 is accepted, this can be seen from the tcount value which is 2.375 > ttable 2.009 and with a significance value of 0.022 < 0.05 then work discipline influence the performance of tutors (teachers). H3 is accepted, this can be seen from the Fcount value which is 58.346 > Ftable 3.19 with a significance value of 0.000 <0.05, so compensation and work discipline have a joint (simultaneous) effect on performance.

Keywords: Compensation, Work Discipline, Performance

INTRODUCTION

Human resources have a very strategic position in the organization, meaning that the human element plays an important role in carrying out activities to achieve goals. For this reason, the existence of human resources in organizations is very strong, Ambar Teguh Sulistiyani and Rosidah (2013). In the current era of globalization, human resource issues are in the spotlight and the focus for companies to survive. Because human resources are the main role in every company activity. Human resources will determine the success of implementing company or agency activities. Humans always play an active and dominant role in every organizational activity because humans are the planners, actors and determinants of the realization of

organizational goals. In an organization, human resources play a major role that influences every activity carried out by the organization and is considered the spearhead for carrying out the organization's daily activities. Edy Sutrisno (2017) explains that human resources are the only resources that have reason, desire, ability, skills, knowledge, drive and work. No matter how advanced technology is, information is developed, capital is available and materials are adequate, without human resources, it will be difficult for an organization to achieve its goals. Even though an organization has good corporate goals and organizational plans, it will be in vain if its human resource elements are not paid attention to, let alone neglected. Organizations must be able to manage employees in order to improve performance within the organization. Managing employees is given great attention because employees are a very significant factor and function as the main driver for the smooth running of the business and organizational performance. Utilizing employees in a company is not an easy and simple matter, but requires serious thought, especially for companies or organizations that use a lot of human labor. All organizations or companies definitely have standards of behavior that must be carried out in relation to work, both written and unwritten. The company wants employees to comply with these behavioral standards in an effort to improve employee performance. A company needs potential human resources, so that leaders and employees can make good contributions and carry out tasks optimally to achieve company goals. An organization will be successful if the individual performance of its employees is good, which is why an organization will strive to improve the performance of its employees so that company goals can be achieved. A company is said to be able to take good care of its employees, which can be seen from the employee's performance. If employee performance is good, then the company has succeeded in managing employees well. However, on the other hand, if the company cannot manage its employees well, then the company fails in cultivating employees. Obtaining maximum employee performance is the hope of all companies. One of the things companies can do is to know what factors cause employee performance to increase and be in line with company goals. Azar & Shafighi (2013) stated that one reason for the success of employees and organizations is because of the compensation factor. Mangkunegara (2015: 84) states that the compensation given to employees greatly influences the level of job satisfaction, work motivation and work results (employee performance). Apart from that, there are several work discipline problems, namely, low employee obedience to work, such as coming in late after a break, leaving early, employees still chatting while working and employee absenteeism. Apart from compensation, discipline also has an important role. Discipline shows employee compliance with the regulations that apply within the company. Tohardi (2012: 393) explains that the meaning of discipline is actions carried out by obeying existing regulations in the form of written and unwritten regulations. Employee discipline can be carried out by establishing regulations that employees

must obey. Regulations are very necessary to provide guidance and counseling for employees in creating good rules and regulations in the company. Good rules and regulations in the company will increase employee morale and work effectiveness, thereby supporting the achievement of maximum performance. It can be said that it will be difficult for a company to achieve its goals if its employees do not apply good discipline, that is, they do not comply with and carry out existing regulations. Employee discipline can be carried out by establishing regulations that employees must obey. Regulations are very necessary to provide guidance and counseling for employees in creating good rules and regulations in the company. Good rules and regulations in the company will increase employee morale and work effectiveness, thereby supporting the achievement of maximum performance. It can be said that it will be difficult for a company to achieve its goals if its employees do not apply good discipline, that is, they do not comply with and carry out existing regulations. Employee discipline can be carried out by establishing regulations that employees must obey. Regulations are very necessary to provide guidance and counseling for employees in creating good rules and regulations in the company. Good rules and regulations in the company will increase employee morale and work effectiveness, thereby supporting the achievement of maximum performance. It can be said that it will be difficult for a company to achieve its goals if its employees do not apply good discipline, that is, they do not comply with and carry out existing regulations.

Based on the description above, the author is interested in conducting research with the title "The Influence of Compensation and Work Discipline on the Performance of Teachers at the Taman Siswa Private Vocational School at the Taman Siswa College Foundation, Tebing Tinggi City."

Formulation of the problem

Based on the description above, the problems that can be formulated are as follows:

- Does compensation affect the performance of private vocational school tutors (teachers) at the Taman Siswa College Foundation in Tebing Tinggi City?
- 2. Does work discipline influence the performance of private vocational school tutors (teachers) at the Tebing Tinggi City Taman Siswa College Foundation?
- 3. Do compensation and work discipline simultaneously influence the performance of private vocational school tutors (teachers) at the Taman Siswa College Foundation, Tebing Tinggi City?

RESEARCH METHODS

A. The scope of research

1. Time

The time of this research started from January 2020 to July 2020.

2. Location

This research was conducted at Taman Siswa Private Vocational School Jl. Deblod Sundoro No. 9 Rambung, district. Tebing Tinggi City, Tebing Tinggi City, North Sumatra Province.

B. Data Types and Sources

1. Data Type

The type of data used in this research is quantitative data. "Quantitative data is data in the form of numbers in the true sense, so various mathematical operations can be carried out on quantitative data" (V. Wiratna Sujarweni, 2016: 15).

2. Data source

The data source in this research comes from primary data. "Primary data isdata directly received from the first source or from a questionnaire" (Sujarweni and Endrayanto, 2012:21).

C. Population and Sample

1. Population

Population is a generalized area consisting of objects or subjects that have certain qualities and characteristics determined by the author or researcher to be studied and then conclusions drawn (Sugiyono, 2012: 115). The population in this study were all teachers at the Tebing Tinggi Taman Siswa School, totaling 51 people, consisting of 19 people from SMK Business Management and 32 people from SMK IT.

2. Sample

The sample is part of the total number of characteristics possessed by the population (Sugiyono, 2012:116). In determining the sample, the census technique was used, namely the entire population was sampled, namely 51 people.

DISCUSSION

A. Instrument Test

1. Validity test

Validity testing uses SPSS version 17.00 with criteria based on the calculated r value as follows:

- a. If r count > r table or r count < r table then the statement is declared valid.
- b. If r count < r table or r count > r table then the statement is declared invalid. This test was carried out on 30 respondents, so (df = nk) df = 30 -2 = 28 with α = 5%, the r table value obtained iso.3610(Ghozali, 2016:463), then the calculated r value will be compared with the table r value as in table 4.5 below:

Table 4.5. Validity Test Results

Performance Variable (Y)						
Statement	rcount	rtable	Validity			
P1	798	0.3610	Valid			
P2	868	0.3610	Valid			
P3	884	0.3610	Valid			
P4	838	0.3610	Valid			
P5	817	0.3610	Valid			
P6	399	0.3610	Valid			

Compensati	Compensation Variable (X1)					
Statement	rcount	rtable	Validity			
P1		0.3610	Valid			
P2		0.3610	Valid			
P3		0.3610	Valid			
P4		0.3610	Valid			
P5		0.3610	Valid			
Work Discipline Variable (X2)						
Statement	rcount	rtable	Validity			
P1	0	0.3610	Valid			
P2	5	0.3610	Valid			
P3	5	0.3610	Valid			
P4	6	0.3610	Valid			
P5	5	0.3610				
P6	8	0.3610				
P7	4	0.3610				
P8	9	0.3610				

Source: Data processed from attachment 3 (2020)

Table 4.5 shows that all statement points, including performance variables (Y), compensation (X1) and work discipline (X2), have a calculated r value that is greater than the r value in the table, so it can be concluded that all statements for each variable are declared valid.

2. Reliability Test

Reliability is an index that shows the extent to which a measuring instrument is trustworthy or reliable. According to Sugiyono (2013:64) a factor is declared reliable if Cronbach Alpha is greater than 0.6. Based on the results of data processing using SPSS version 17.00, the following results were obtained:

Table 4.6. Reliability Test Results

Variable	Cronbach Alpha	Constant	Reliability
Performance Variable (Y)	0.792	0.6	Reliable
Compensation Variable (X1)	0.797	0.6	Reliable
Work Discipline Variable (X2)	0.770	0.6	Reliable

Source: Data processed from attachment 3 (2020)

Based on the reliability test using Cronbach Alpha, all research variables are reliable/reliable because Cronbach Alpha is greater than 0.6, so the results of this study indicate that the measurement tool in this research has met the reliability test (reliable and can be used as a measuring tool).

B. Classic assumption test

The testing of classical assumptions with the SPSS version 17.00 program carried out in this research includes:

1. Normality test

The Normality Test aims to test whether in the regression model, confounding or residual variables have a normal distribution (Ghozali, 2016: 154). Data normality testing can be done using two methods, graphics and statistics.

The graphic method normality test uses a normal probability plot, while the statistical method normality test uses the one sample Kolmogorov Smirnov Test.

The normality test using the graphic method can be seen in the following picture:

Normal P-P Plot of Regression Standardized Residual

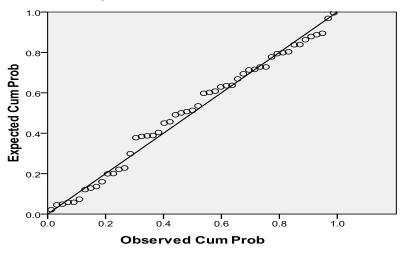


Figure 4.3. Normal P Plot

Data that is normally distributed will form a straight diagonal line and plotting the residual data will be compared with the diagonal line. If the residual data distribution is normal then the line depicting the actual data will follow the diagonal line (Ghozali, 2016: 154).

The test results using SPSS version 17 are as follows:

Table 4.7.
One Sample Kolmogorov Smirnov Test

One-Sample Kolmogorov-Smirnov Test

		Unstandardized Residuals
N		51
Normal	Mean	.0000000
Parameters,, b	Std. Deviation	1.52051589
Most	Absolute	,082
Extreme Differences	Positive	,062
	Negative	082
Kolmogorov-	-Smirnov Z	,583
Asymp. Sig. ((2-tailed)	,886
Monte Carlo	Sig.	.882c
Sig. (2-	99% Confidence Interval Lower Bound	,766

- a. Test distribution is Normal.
- b. Calculated from data.
- c. Based on 51 sampled tables with starting seed 2000000.

Source: Data processed from attachment 4 (2020)

From the output in table 4.7, it can be seen that the significance value (Monte Carlo Sig.) for all variables is 0.882. If the significance is greater than 0.05, then the residual value is normal, so it can be concluded that all variables are normally distributed.

2. Multicollinearity Test

The multicollinearity test aims to find out whether in the regression model there is a correlation between the independent variables. The multicollinearity test in this research is seen from the tolerance value or variance inflation factor (VIF). The calculation of the tolerance value or VIF using the SPSS version 17.00 program can be seen in Table 4.8 below:

Table 4.8.
Multicollinearity Test Results

Coefficientsa

	Collinearity Statistics				
Model	Tolerance	VIF			
1 (Constant)					
COMPENSATION	,365	2,736			
DISCIPLINE	,365	2,736			

a. Dependent Variable: PERFORMANCE

Source: Data processed from attachment 4 (2020)

Based on table 4.8, it can be seen that the tolerance value of the compensation variable (X1) is 0.365 and work discipline (X2) is 0.365, all of which are greater than 0.10, while the VIF value of the compensation variable (X1) is 2.736 and work discipline (X2) amounting to 2.736, all of which are smaller than 10. Based on the calculation results above, it can be seen that the tolerance value for all independent variables is greater than 0.10 and the VIF value for all independent variables is also smaller than 10 so that there are no symptoms of correlation in the independent variables. So it can be concluded that there are no symptoms of multicollinearity between the independent variables in the regression model.

3. Heteroscedasticity Test

The heteroscedasticity test aims to test whether the regression model has unequal variances from the residuals of one observation to another. A good regression model is one that is homoscedastic or does not have heteroscedasticity. One way to detect the presence or absence of heteroscedasticity is with the Glejser Test. In the Glejser test, if the independent variable is statistically significant in influencing the

dependent variable then there is an indication that heteroscedasticity is occurring. On the other hand, if the independent variable is not statistically significant in influencing the dependent variable then there is no indication of heteroscedasticity. This is observed from the probability of significance above the 5% confidence level (Ghozali, 2016; 138).

The results of data processing using SPSS 17.00 show the results in the following table:

Table 4.9. Glejser Test Results Coefficients^a

	Unstandard	Unstandardized Coefficients Standardized Coefficients			
Model	В	Std. Error	Beta	t	Sig.
1 (Constant)	1,993	1,201		1,660	.103
COMPENSATION	147	,080	420	-1,824	,074
DISCIPLINE	,068	,060	,260	1,130	,264

a. Dependent Variable: ABS RES

Based on table 4.9, the significance value of the compensation variable (X1) is 0.074 and the significance of the work discipline variable (X2) is 0.264, both of which are greater than 0.050, so it can be concluded that there are no symptoms of heteroscedasticity.

C. Multiple Linear Regression Testing

Multiple linear regression testing explains the magnitude of the role of the compensation variable (X1) and work discipline variable (X2) on the performance variable (Y). Data analysis in this study used multiple linear regression analysis using SPSS version 17.00. The analysis of each variable is explained in the following description:

Table 4.10.
Multiple Linear Regression Results

Coefficients^a

	Unstandard	nstandardized Coefficients Standardized Coefficie				
Model	В	Std. Error	Beta			
		2,067				
COMPENSATION	,620	.138	,577			
DISCIPLINE	,245	.103	,306			

a. Dependent Variable: PERFORMANCE

Source: Data processed from attachment 4 (2020)

Based on these results, the multiple linear regression equation has the formulation: $Y = a + b1X1 + b2X2 + \varepsilon$, so that the equation is obtained: Y = 3.975 + 0.620X1 + 0.245X2The description of the multiple linear regression equation above is as follows:

- 1. The constant value (a) of 3.975 shows the magnitude of the performance variable (Y) if the compensation variable (X1) and work discipline variable (X2) are equal to zero.
- 2. The compensation regression coefficient (X1) (b1) value of 0.620 shows the large role of the compensation variable (X1) on the performance variable (Y) assuming the work discipline variable (X2) is constant. This means that if the compensation factor (X1) increases by 1 value unit, then the performance variable (Y) is predicted to increase by 0.620 value units assuming the work discipline variable (X2) is constant.
- 3. The regression coefficient value of work discipline (X2) (b2) is 0.245 indicating the large role of the work discipline variable (X2) on the performance variable (Y) assuming the compensation variable (X1) is constant. This means that if the work discipline factor (X2) increases by 1 value unit, then the performance variable (Y) is predicted to increase by 0.245 value units assuming the compensation variable (X1) is constant.

D. Coefficient of Determination (R2)

The coefficient of determination is used to see how much the independent variable contributes to the dependent variable. The greater the value of the coefficient of determination, the better the ability of the independent variable to explain the dependent variable. If the determination (R2) is greater (approaching 1), then it can be said that the influence of variable X is large on the performance variable (Y).

The value used to view the coefficient of determination in this research is in the adjusted R square column. This is because the adjusted R square value is not susceptible to the addition of independent variables. The coefficient of determination value can be seen in Table 4.11 below:

Table 4.11.
Coefficient of Determination
Model Summary^b

				Std.	Change :	Statistic	S				
				Error of							
		R	Adjusted	the	R	Square	F			Sig.	F
Model	R	Square	R Square	Estimate	Change		Change	df1	df2	Change	
1	.842a	,709	,696	1.55187	,709		58,346	2	48	,000	

a. Predictors: (Constant), DISCIPLINE, COMPENSATION

b. Dependent Variable: PERFORMANCE

Source: Data processed from attachment 4 (2020)

Based on table 4.11, it can be seen that the adjusted R square value is 0.696 or 69.6%. This shows that the compensation variable (X1) and work discipline variable (X2) can explain the performance variable (Y) by 69.6%, the remaining 30.4% (100% - 69.6%) is explained by other variables outside This research model includes salary, leadership style and work environment.

E. Hypothesis testing

1. t Test (Partial)

The t statistical test is also called the individual significance test. This test shows how far the independent variable partially influences the dependent variable.

In this research, partial hypothesis testing was carried out on each independent variable as in Table 4.12 below:

Table 4.12. Partial Test (t)

Coefficients^a

			Standardized Coefficients		
Model	В	Std. Error	Beta	t	Sig.
1 (Constant)	3,975	2,067		1,923	,060
COMPENSA TION	, 620	.138	,577	4,479	,000
DISCIPLINE	,245	.103	,306	2,375	,022

a. Dependent Variable: PERFORMANCE

Source: Data processed from attachment 4 (2020)

- a. Test the hypothesis of the influence of the compensation variable (X1) on the performance variable (Y)
 - The form of hypothesis testing based on statistics can be described as follows: Decision making criteria:
- 1) The hypothesis is rejected if tcount < ttable or -tcount > ttable or Sig value. > 0.05
- 2) The hypothesis is accepted if tcount ≥ ttable or -tcount ≤ ttable orSig. < 0.05 From table 4.12, the tcount value is obtained4.479, with α = 5%, ttable (5%; nk = 49) the ttable value is 2.009. From this description it can be seen that tcount (4.479) > ttable (2.009), likewise with a significance value of 0.000 < 0.05 then It can be concluded that the first hypothesis is accepted, meaning that the compensation variable (X1) has an effect on the performance variable (Y). The explanation is that if compensation is given more or more frequently to teachers who excel, the teacher's performance will increase. These results are in line with research conducted byKempa (2016) entitled

The influence of compensation and work discipline on CV employee performance. Citrasurya Indoprima Light.

- b. Test the hypothesis of the influence of the work discipline variable (X2) on the performance variable (Y)
 - The form of hypothesis testing based on statistics can be described as follows: Decision making criteria:
- 1) The hypothesis is rejected if tcount < ttable or -tcount > ttable or Sig value. > 0.05
- 2) The hypothesis is accepted if tcount ≥ ttable or -tcount ≤ -ttable or Sig. < 0.05
 From table 4.12, the tcount value is obtained2.375 with α = 5%, ttable (5%; nk = 49)
 obtained a ttable value of 2.009. From this description it can be seen that tcount
 (2.375) > ttable (2.009), and the significance value is 0.022 < 0.05, so it can be
 concluded that the second hypothesis is accepted, meaning that the work discipline
 variable (X2) has an effect on the performance variable (Y). The explanation is, the
 more disciplined a teacher is in his work, the better his performance will be. These
 results are in line with research conducted byKaliri (2012) UNNES entitled "The
 Influence of Discipline and Work Motivation on Teacher Performance in Public High
 Schools in Pemalang Regency" andQurrotul'Aini (2011) IAIN Walisongo Semarang
 entitled "The Influence of Job Satisfaction and Work Discipline on the Performance of
 Muslim Employees (Case Study at Dedy Jaya Plaza Kejiwaan Brebes)" andKempa
 (2016) entitled The influence of compensation and work discipline on CV employee
 performance. Citrasurya Indoprima Light.

2. F Test (Simultaneous)

This test basically shows whether all the independent variables included in this model have a joint influence on the dependent variable. The results of the F test can be seen in table 4.13 below:

Table 4.13. Simultaneous Test (F)

ANOVA^b

Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	281,029	2	140,515	58,346	,000a
Residual	115,598	48	2,408		
Total	396,627	50			

a. Predictors: (Constant), DISCIPLINE, COMPENSATION

b. Dependent Variable: PERFORMANCE

Source: Data processed from attachment 4 (2020)

The form of hypothesis testing based on statistics can be described as follows: Decision making criteria:

- a. The hypothesis is accepted if the calculated F value > F table or Sig. < 0.05.
- b. The hypothesis is rejected if the calculated F value < F table or Sig. > 0.05. From table 4.13, the calculated F value is obtained 58,346. With α = 5%, dk numerator: k, dk denominator: nk-1 (5%; 2; 48) the Ftable value is 3.19. From this description it can be seen that Fcount (58.346) > Ftable (3.19), and the significance value is 0.000 < 0.05, so it can be concluded that the third hypothesis is accepted, meaning that the compensation variable (X1) and the work discipline variable (X2) have a joint effect. the same (simultaneous) to the performance variable (Y). These results are in line with research conducted by Kempa (2016) entitled The influence of compensation and work discipline on the performance of CV employees. Citrasurya Indoprima Light. Based on the research results, compensation has a significant positive influence on employee performance with a significance value of 0.001 and this result is smaller than 0.05. Apart from that, the relationship between the two variables can be seen from the calculated t value of 3,717 which is greater than the t table of 1,685.

Conclusion

This research is to answer the research objective, namely to analyze the influence of compensation and work discipline on the performance of teachers (teachers) at Taman Private Vocational School for Tebing Tinggi City students.. The following conclusions can be drawn:

- Multiple linear regression equationY = 3.975 + 0.620X1 + 0.245X2
 Compensation and work discipline on performance.
 - The value of the coefficient of determination R2 is seen from its magnitudeThe adjusted R square value is 0.696 or 69.6%. This shows that the compensation variable (X1) and work discipline variable (X2) can explain the performance variable (Y) by 69.6%, the remaining 30.4% (100% 69.6%) is explained by other variables outside this research model.
- 2. Tcalculated value of compensation variable (X1)as big as 4.479, with α = 5%, ttable (5%; nk = 49) the ttable value is 2.009. From this description it can be seen that tcount (4.479) > ttable (2.009), likewise with a significance value of 0.000 < 0.05 then It can be concluded that the first hypothesis is accepted, meaning that the compensation variable (X1) has an effect on the performance variable (Y).
- 3. Mark_{tcount}work discipline variable (X2)as big as2.375 with α = 5%, ttable (5%; nk = 49) obtained a ttable value of 2.375. From this description it can be seen that tcount (2.375) > ttable (2.009), and the significance value is 0.022 <0.05, so it can be concluded that the second hypothesis is accepted, meaning that the work discipline variable (X2) has an effect on the performance variable (Y).
- 4. The Fcount value is knownas big as 58.346. With α = 5%, dk numerator: k, dk denominator: nk-1 (5%; 2; 48) the Ftable value is 3.19. From this description it can be seen that Fcount (58.346) > Ftable (3.19), and the significance value is 0.000 < 0.05, so

it can be concluded that the third hypothesis is accepted, meaning that the compensation variable (X1) and the work discipline variable (X2) have a joint effect. - the same (simultaneous) to the performance variable (Y).

BIBLIOGRAPHY

- AA Anwar Prabu Mangkunegara. 2012. Human Resource Management. Bandung: PT. Rosdakarya Teenager.
- Aan Qurrotul'Aini. 2011. The Influence of Job Satisfaction and Work Discipline on the Performance of Muslim Employees. Journal: IAIN Walisongo Semarang
- Alex S Nitisemito. 2011. Personnel Management (Human Resources Management, Fifth Edition. Ghalia: Fourteenth Printing.
- Ambar, Teguh Sulistiyani and Rosidah. 2013. Human Resources Management. Yogyakarta: Science Graha.
- Azar, M. & Shafighi, AA 2013. The Effect of Work Motivation on Employees Job Performance, International Journal of Academic Research in Business and Social Sciences, 3, pp. 78–82.
- Edy Sutrisno. 2017. Human Resource Management. Jakarta: Prenadamedia group.
- Ghozali, Imam. 2011. Application of Multivariate Analysis with the SPSS Program. Semarang: Diponegoro University Publishing Agency.
- Ghozali, Imam. 2016. Multivariate Analysis Applications with the IBM SPSS 23 Program (Edition 8). Printing VIII. Semarang: Diponegoro University Publishing Agency.
- Gouzali, Saydam. 2014. Built In Training The Right Way to Develop HR Professionalism. Bandung: PT Teen Rosdakarya.
- Gujarati, DN 2012. Basics of Econometrics, Translated by Mangunsong, RC book 2, Edition 5. Jakarta: Salemba Empat.
- Hasibuan, Malayu SP 2010. Human Resource Management. Jakarta: PT Bumi Aksara.
- Hasibuan. 2012. Personnel and Human Resources Management. Yogyakarta: BPFE-Yogyakarta.
- Ike Rachmawati Kusdyah. 2012. Human Resource Management. Yogyakarta: ANDI.
- Kaliri. 2012. The Influence of Discipline and Work Motivation on Teacher Performance at Public High Schools in Pemalang Regency. Journal: UNNES.
- Felt. 2016. The influence of compensation and work discipline on CV employee performance. Citrasurya Indoprima Light. Journal.
- Kismono, Nervous. 2011. Introductory Business, Second Edition. Yogyakarta: BPFE UGM.
- Mangkunegara AP, 2015, Human Resources Planning and Development. Bandung: Rfika Aditama.
- Munandar, Utami. 2014. Developing the Creativity of Gifted Children. Jakarta: Rineka Cipta.
- Mathis, Robert L. and John H. Jackson. 2012. Human Resources Management, Jakarta: First Edition Salemba Empat.
- Moses N. Kiggundu. 2011. Managing Organization in Developing Countries: An Operation and Strategies Approach. Kumarian, Inc.
- Nawawi, Ismail. 2013. Leadership and Performance Organizational Culture. Jakarta: PT. Fajar Iterpratama Mandiri.

- Philip Kotler and Armstrong. 2011. Marketing Management in Indonesia (1st edition). Jakarta: Salemba Empat.
- Rivai, Veithzal, 2012. Human Resource Management for Companies: from Theory to Practice, First Edition, Jakarta: Publisher PT. Raja Grafindo Persada.
- Rivai & Basri, 2015. Performance Appraisal. Jakarta: Raja, Grafindo Persada.
- Sugiyono. 2012. Quantitative Qualitative Research Methods and R & D. Bandung: Alfabeta
- Sugiyono. 2017.Business Research Methods: Quantitative, Qualitative, Approaches Combination, and R&D.Bandung: Alphabeta.
- Sujarweni, VW, & Endrayanto, P. 2012. Statistics for Research. Yogyakarta: Science Graha.
- Sujarweni, V Wiratna. 2016. Complete Accounting Research Using SPSS. Yogyakarta: Pustaka Baru Press.
- Simamora. 2014. Human Resources Management. 3rd Edition. STIE YKPN
- Sinungan, Muchdarsyah. 2015. Productivity: What and How. Jakarta: Earth of Letters.
- Siswanto Sastrohadiwiryo. 2012. Management of Indonesian Workers. Administrative and Operational Approach. Jakarta: Earth of Letters.
- Suharyanto, Hadiyanu and Agus Heruanto Hadna. 2013. Human Resources Management. Fourteenth Printing. Jakarta: PT. Raja Grafindo Persada.
- Tohardi, Ahmad. 2012. Practical Understanding of Human Resources Management, Bandung: CV. Mandar Forward.